A novel strain sensor based on the campaniform sensillum of insects.

نویسندگان

  • A Skordos
  • P H Chan
  • J F V Vincent
  • G Jeronimidis
چکیده

The functional design of the campaniform sensillum was modelled as a hole in a plate using two- and three-dimensional finite-element modelling. Different shapes of opening in a fibrous composite plate amplify differently the global strains imposed on the plate, and different configurations of reinforcement also have an effect. In this paper, the main objective is to study the strain and displacement fields associated with circular or elliptical openings in laminated plates in order to investigate their potential for integrated strain sensors. Since we are therefore primarily interested with the detection of displacement, the detailed stress concentration levels associated with these openings are not of primary concern. However, strain energy density levels associated with different hole and fibre configurations have been used to assess the relative likely strength reduction effect of the openings. To compare the relative strain amplification effect of drilled and formed holes of the same size in loaded plates, we have used the relative change in length of diameters (circular) or semi-axes (elliptical) in directions parallel and normal to the load. Various techniques which could sense this deformation were investigated, in particular, the coupling mechanism of a campaniform sensillum of Calliphora vicina. This mechanism was resolved into discrete components: a cap surrounded by a collar, a joint membrane and an annulus-shaped socket septum with a spongy compliant zone. The coupling mechanism is a mechanical linkage which transforms the stimulus into two deformations in different directions: monoaxial transverse compression of the dendritic tip and vertical displacement of the cap. The mechanism is insensitive to change of the material properties of the socket septum, the cuticular cap and the spongy cuticle. The joint membrane may serve as a gap filler. The material properties of the collar have a substantial influence on the coupling mechanism's output. A 30% change of stiffness of the collar causes 45% change in the output of the coupling mechanism. The collar may be able to tune the sensitivity of the sensillum by changing its elastic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel concept inspired by campaniform sensilla for the design of strain sensors used in space applications

This paper presents a bio-inspired approach for the design of strain sensors embedded in space structures. Campaniform sensilla, which are natural strain sensors, are used by insects for monitoring deformations of their bodies. The strategy used in nature is to locally amplify, through arrays of elliptical micro-holes, mechanical deformations. The authors focused their research on campaniform s...

متن کامل

Biomimetics of Campaniform S,ensilla: Measuring Strain from the Deformation of Holes

We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90° by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to disp...

متن کامل

Simple optical characterisation for biomimetic micromachined silicon strain-sensing structure

This paper presents an on-going work to develop micromachined silicon-based strain sensor inspired from the campaniform sensillum of insects. We present simple optical setup for the characterisation of a membrane-in-recess structure as an early stage in mimicking the natural sensor. The microstructure is a 500 nm-thick SiO2/SiN circular membrane, burried 13 μm from the surface of a 3x3 mm, 525 ...

متن کامل

The mechanism of sensory transduction in a mechanoreceptor. Functional stages in campaniform sensilla during the molting cycle

This paper describes the ultrastructural modifications that cockroach campaniform sensilla undergo at three major stages in the molting cycle and finds that the sensilla are physiological functional at all developmental stages leading to ecdysis. Late stage animals on the verge of ecdysis have two completely separate cuticles. The campaniform sensillum sends a 220-mum extension of the sensory p...

متن کامل

Design, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force

This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 360 1791  شماره 

صفحات  -

تاریخ انتشار 2002